locus
Class for the input data of the fine-mapping analysis.
Locus
¶
Locus class to represent a genomic locus with associated summary statistics and linkage disequilibrium (LD) matrix.
Parameters¶
popu : str Population code. e.g. "EUR". Choose from ["AFR", "AMR", "EAS", "EUR", "SAS"]. cohort : str Cohort name. sample_size : int Sample size. sumstats : pd.DataFrame Summary statistics DataFrame. ld : Optional[LDMatrix], optional LD matrix, by default None. if_intersect : bool, optional Whether to intersect the LD matrix and summary statistics file, by default False.
Attributes¶
original_sumstats : pd.DataFrame The original summary statistics file. sumstats : pd.DataFrame The processed summary statistics file. ld : LDMatrix The LD matrix object. chrom : int Chromosome. start : int Start position of the locus. end : int End position of the locus. n_snps : int Number of SNPs in the locus. prefix : str The prefix combining population and cohort. locus_id : str Unique identifier for the locus. is_matched : bool Whether the LD matrix and summary statistics file are matched. lambda_s : Optional[float] The estimated lambda_s parameter from estimate_s_rss function, None if not calculated.
Notes¶
If no LD matrix is provided, only ABF method can be used for fine-mapping.
Source code in credtools/locus.py
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
|
chrom
property
¶
Get the chromosome.
cohort
property
¶
Get the cohort name.
end
property
¶
Get the end position.
is_matched
property
¶
Check if the LD matrix and sumstats file are matched.
locus_id
property
¶
Get the locus ID.
n_snps
property
¶
Get the number of SNPs.
original_sumstats
property
¶
Get the original sumstats file.
popu
property
¶
Get the population code.
prefix
property
¶
Get the prefix of the locus.
sample_size
property
¶
Get the sample size.
start
property
¶
Get the start position.
__init__(popu, cohort, sample_size, sumstats, locus_start, locus_end, ld=None, if_intersect=False)
¶
Initialize the Locus object.
Parameters¶
popu : str Population code. e.g. "EUR". Choose from ["AFR", "AMR", "EAS", "EUR", "SAS"]. cohort : str Cohort name. sample_size : int Sample size. sumstats : pd.DataFrame Summary statistics DataFrame. locus_start : int Fixed start position for the locus. locus_end : int Fixed end position for the locus. ld : Optional[LDMatrix], optional LD matrix, by default None. if_intersect : bool, optional Whether to intersect the LD matrix and summary statistics file, by default False.
Warnings¶
If no LD matrix is provided, a warning is logged that only ABF method can be used.
Source code in credtools/locus.py
__repr__()
¶
Return a string representation of the Locus object.
Returns¶
str String representation of the Locus object.
Source code in credtools/locus.py
copy()
¶
Copy the Locus object.
Returns¶
Locus A copy of the Locus object.
Source code in credtools/locus.py
LocusSet
¶
LocusSet class to represent a set of genomic loci.
Parameters¶
loci : List[Locus] List of Locus objects.
Attributes¶
loci : List[Locus] List of Locus objects. n_loci : int Number of loci. chrom : int Chromosome number. start : int Start position of the locus. end : int End position of the locus. locus_id : str Unique identifier for the locus.
Raises¶
ValueError If the chromosomes of the loci are not the same.
Source code in credtools/locus.py
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 |
|
chrom
property
¶
end
property
¶
Get the end position.
locus_id
property
¶
Get the locus ID.
n_loci
property
¶
Get the number of loci.
start
property
¶
Get the start position.
__init__(loci)
¶
__repr__()
¶
Return a string representation of the LocusSet object.
Returns¶
str String representation of the LocusSet object.
Source code in credtools/locus.py
check_loci_info(loci_info)
¶
Check and validate loci information DataFrame.
Parameters¶
loci_info : pd.DataFrame DataFrame containing loci information.
Returns¶
pd.DataFrame Validated and type-corrected loci_info DataFrame.
Raises¶
ValueError If required columns are missing, data types are incorrect, or locus_id/boundary consistency checks fail.
Notes¶
This function performs the following checks: 1. Ensures all required columns are present 2. Validates and converts data types 3. Checks that loci with same locus_id have same chr, start, end 4. Validates chromosome, start, and end values
Source code in credtools/locus.py
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 |
|
intersect_loci(list_loci)
¶
Intersect the Variant IDs in the LD matrices and the sumstats files of a list of Locus objects.
Parameters¶
list_loci : List[Locus] List of Locus objects.
Returns¶
List[Locus] List of Locus objects containing the intersected LD matrices and sumstats files.
Raises¶
NotImplementedError This function is not yet implemented.
Notes¶
This function is planned to intersect variant IDs across multiple loci to ensure consistent variant sets for multi-ancestry analysis.
Source code in credtools/locus.py
intersect_sumstat_ld(locus)
¶
Intersect the Variant IDs in the LD matrix and the sumstats file.
Parameters¶
locus : Locus Locus object containing LD matrix and summary statistics.
Returns¶
Locus Locus object containing the intersected LD matrix and sumstats file.
Raises¶
ValueError If LD matrix not found or no common Variant IDs found between the LD matrix and the sumstats file.
Warnings¶
If only a few common Variant IDs are found (≤ 10), a warning is logged.
Notes¶
This function performs the following operations:
- Checks if LD matrix and summary statistics are already matched
- Finds common SNP IDs between LD matrix and summary statistics
- Subsets both datasets to common variants
- Reorders data to maintain consistency
- Returns a new Locus object with intersected data
Source code in credtools/locus.py
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 |
|
load_locus(prefix, popu, cohort, sample_size, locus_start, locus_end, if_intersect=False, calculate_lambda_s=False, **kwargs)
¶
Load the input data of the fine-mapping analysis.
Parameters¶
prefix : str Prefix of the input files. popu : str Population of the input data. cohort : str Cohort of the input data. sample_size : int Sample size of the input data. locus_start : int Fixed start position for the locus. locus_end : int Fixed end position for the locus. if_intersect : bool, optional Whether to intersect the input data with the LD matrix, by default False. calculate_lambda_s : bool, optional Whether to calculate lambda_s parameter using estimate_s_rss function, by default False. **kwargs : Any Additional keyword arguments passed to loading functions.
Returns¶
Locus Locus object containing the input data.
Raises¶
ValueError If the required input files are not found.
Notes¶
The function looks for files with the following patterns:
- Summary statistics: {prefix}.sumstat or {prefix}.sumstats.gz
- LD matrix: {prefix}.ld or {prefix}.ld.npz
- LD map: {prefix}.ldmap or {prefix}.ldmap.gz
All files are required for proper functioning.
Examples¶
locus = load_locus('EUR_study1', 'EUR', 'study1', 50000) print(f"Loaded locus with {locus.n_snps} SNPs") Loaded locus with 10000 SNPs
Source code in credtools/locus.py
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 |
|
load_locus_set(locus_info, if_intersect=False, calculate_lambda_s=False, **kwargs)
¶
Load the input data of the fine-mapping analysis for multiple loci.
Parameters¶
locus_info : pd.DataFrame DataFrame containing the locus information with required columns: ['prefix', 'popu', 'cohort', 'sample_size', 'chr', 'start', 'end', 'locus_id']. if_intersect : bool, optional Whether to intersect the input data with the LD matrix, by default False. calculate_lambda_s : bool, optional Whether to calculate lambda_s parameter using estimate_s_rss function, by default False. **kwargs : Any Additional keyword arguments passed to load_locus function.
Returns¶
LocusSet LocusSet object containing the input data.
Raises¶
ValueError If required columns are missing or if the combination of popu and cohort is not unique.
Notes¶
The locus_info DataFrame must contain the following columns:
- prefix: File prefix for each locus
- popu: Population code
- cohort: Cohort name
- sample_size: Sample size for the cohort
- chr: Chromosome number
- start: Start position of the locus
- end: End position of the locus
- locus_id: Locus identifier
All rows must have the same chr, start, end, locus_id values (representing the same locus).
Examples¶
locus_info = pd.DataFrame({ ... 'prefix': ['EUR_study1', 'ASN_study2'], ... 'popu': ['EUR', 'ASN'], ... 'cohort': ['study1', 'study2'], ... 'sample_size': [50000, 30000] ... }) locus_set = load_locus_set(locus_info) print(f"Loaded {locus_set.n_loci} loci") Loaded 2 loci
Source code in credtools/locus.py
653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 |
|