{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Logo" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "ExecuteTime": { "end_time": "2021-06-16T12:02:25.436409Z", "start_time": "2021-06-16T12:02:25.434430Z" } }, "outputs": [], "source": [ "import numpy as np\n", "import pandas as pd" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "ExecuteTime": { "end_time": "2021-06-16T12:24:26.401623Z", "start_time": "2021-06-16T12:24:26.398960Z" } }, "outputs": [], "source": [ "pfm = pd.DataFrame(np.random.randint(10,1000,(10,4)),columns=list('ACGT'))" ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "ExecuteTime": { "end_time": "2021-06-16T12:35:41.780228Z", "start_time": "2021-06-16T12:35:41.774502Z" } }, "outputs": [], "source": [ "pfm = [[0,0.8,0.2,0,],\n", " [0,0.2,0.8,0,],\n", " [0,0.8,0.2,0,],\n", " [0.3,0.3,0.4,0,],\n", " [0.2,0.4,0.3,0.1,],\n", " [0.0,0.2,0.8,0.0,],\n", " [0.0,0.8,0.2,0.0,],\n", " [0.0,0.2,0.8,0.0,],]\n", "pfm = pd.DataFrame(pfm,columns=list('ACGT'))" ] }, { "cell_type": "code", "execution_count": 28, "metadata": { "ExecuteTime": { "end_time": "2021-06-16T12:36:01.925022Z", "start_time": "2021-06-16T12:36:01.918536Z" } }, "outputs": [ { "data": { "text/html": [ "
\n", " | A | \n", "C | \n", "G | \n", "T | \n", "
---|---|---|---|---|
0 | \n", "0.0 | \n", "0.8 | \n", "0.2 | \n", "0.0 | \n", "
1 | \n", "0.0 | \n", "0.2 | \n", "0.8 | \n", "0.0 | \n", "
2 | \n", "0.0 | \n", "0.8 | \n", "0.2 | \n", "0.0 | \n", "
3 | \n", "0.3 | \n", "0.3 | \n", "0.4 | \n", "0.0 | \n", "
4 | \n", "0.2 | \n", "0.4 | \n", "0.3 | \n", "0.1 | \n", "
5 | \n", "0.0 | \n", "0.2 | \n", "0.8 | \n", "0.0 | \n", "
6 | \n", "0.0 | \n", "0.8 | \n", "0.2 | \n", "0.0 | \n", "
7 | \n", "0.0 | \n", "0.2 | \n", "0.8 | \n", "0.0 | \n", "